Purpose
Basic Principles
Capacitance is the ratio of the change in an electric charge to the corresponding change in its electrical potential (i.e., voltage). Capacitors, components that that have the “capacity” to store an electric charge, consist of conductive parallel plates that don’t touch or connect with each other. Instead, these metal plates are electrically-separated by air or a layer of insulating material (i.e., the dielectric).
MTI’s technology is based on the principles of parallel plate capacitor measurement and uses a probe as one of the plates and a grounded target as the other. The electrical capacitance that’s formed between the probe and the target varies as a function of the distance (gap) between these two surfaces. An amplifier converts the capacitance of the gap into an output voltage that’s proportional to the gap.
Why Capacitance?
Because capacitance doesn’t require physical contact between the sensor and the target, there’s no mechanical loading, probe or target wear, or target distortion. Capacitive probes also cost significantly less than laser interferometers while matching or exceeding them in terms of stability, precision and resolution.
Importantly, capacitive probes provide reliable performance in extreme environments. For example, they can withstand temperatures as high as 1200°F (650°C) and as low as 4°K (-269.15°C). Capacitive probes also work in very strong magnetic fields (2 Tesla) and operate under vacuum conditions (10-7 Torr). They withstand humidity, too.
Getting Started
Now that you know some basics, it’s time to examine uses and applications. You’ll also benefit by reading MTI’s case studies from different industries. Before using capacitance for your own application, however, you need to account for design considerations. Comparing the capacitance measurement systems that are available from MTI Instruments can also support your efforts.
Uses and Applications
Design Considerations
- What are you trying to measure?
- What is the level of accuracy that you need?
- What is the application environment?
- What are the risks of grounding the target?
- Do you need continuous, automatic monitoring?
This is just some of what you’ll need to know. That’s why it’s important to choose the right partner, too.
Industries & Case Studies
Additional Resources
- Electric Fields and Capacitance (All About Circuits)
- What are Capacitive Position Sensors? (AZO Materials)
- How Capacitive Sensors Work and How to Use Them Effectively (SensorLand)
- Capacitive Sensors: Designs and Applications (Google Books)
- Capacitive Sensors Review (SlideShare Presentation)
Recent MTI News
Press Release: Vitrek, LLC Expands Industry-Leading MTI PBS line to include the PBS eXpress™, a Portable Engine Balancing System for Business and Regional Jets
Vitrek, LLC Expands Industry-Leading MTI PBS line to include the PBS eXpress™, a Portable Engine Balancing System for Business and Regional Jets Lightweight, portable system utilizes proven PBS technology for fast, highly accurate rebalancing of small-frame turbofan and turboprop engines
Visit Us at Semicon West!
Semicon West Trade Show - July 9-11 in San Francisco, CA! Visit the Vitrek Booth #5671 to see our latest innovations for the semiconductor industry!
Case-In-Point: MTI Turbine Vibration Analyzer/Balancing System Technology Principles
What do you think when you’re flying home, cruising at 30,000 feet and the drinks have just been served? Our engineers think about the ripple in the glass. That ripple signals vibration and is an indication that the engine may be in need of a balance.