FOXI VXI Slot-0 Controller

# **User's Manual**

February 16, 2001

(C) 1999, 2001 Copyright by KineticSystems Company, LLC Lockport, Illinois All rights reserved

# CONTENTS

| CONTENTS                                                                                                    | i    |
|-------------------------------------------------------------------------------------------------------------|------|
| LIST OF TABLES                                                                                              |      |
| UNPACKING AND INSTALLATION                                                                                  | 4    |
| Logical Address Switches                                                                                    | 4    |
| Module Insertion                                                                                            |      |
| FRONT PANEL INFORMATION                                                                                     | 6    |
| Node Address Switch                                                                                         | 6    |
| LEDs                                                                                                        | 6    |
| Option Specific Connectors                                                                                  | 7    |
| SMB Connector Option                                                                                        | 7    |
| Fiberoptic                                                                                                  |      |
| VXIBUS CONNECTORS                                                                                           |      |
| STRAPPING INFORMATION                                                                                       | .11  |
| Strap Descriptions                                                                                          |      |
| VXIbus Slot 0 Configuration                                                                                 |      |
| VXIbus Slot 0 Configuration                                                                                 |      |
| V120 Slot 0 Configuration                                                                                   |      |
| Bus Request Level                                                                                           |      |
| Interrupt Handler                                                                                           |      |
| FTL Trigger I/0                                                                                             |      |
| CLK10 Source                                                                                                |      |
| PROGRAMMING INFORMATION                                                                                     |      |
| VMEbus/VXIbus Addressing                                                                                    |      |
| A16 Base Address                                                                                            |      |
| VXIbus Configuration Registers                                                                              | .17  |
| ID/Logical Address Register (Offset 00 <sub>16</sub> ) 18                                                   |      |
| Device Type Register (Offset 02 <sub>16</sub> ) 19<br>Status/Control Register (Offset 04 <sub>16</sub> ) 20 |      |
| 8 ( 10)                                                                                                     |      |
| Attribute Register (Offset 0816)21MODID Register (Offset 0816)21                                            |      |
| Serial Number High Register (Offset $0A_{16}$ ) 22                                                          |      |
| Serial Number Low Register (Offset 0C <sub>16</sub> )22                                                     |      |
| Version Number Register (Offset 0E <sub>16</sub> ) 24                                                       |      |
| Interrupt Status Register (Offset 1A <sub>16</sub> ) 24                                                     |      |
| Interrupt Control Register (Offset 1C <sub>16</sub> ) 24                                                    |      |
| Subclass Register (Offset $1E_{16}$ ) 26                                                                    |      |
| V120 Internal Register Description                                                                          | .27  |
| Control/Status Register (CSR) (00 <sub>16</sub> ) 27                                                        | •= · |
| Burst Count Register (BCT) $(04_{16})$ 28                                                                   |      |
| Delay Count Register (DCT) $(08_{16})$ 29                                                                   |      |
| Fotal Transfer Count Register (TTCR) (0C <sub>16</sub> ) 30                                                 |      |
| Demand FIFO Register (DFR) $(14_{16})$ 30                                                                   |      |
| Interrupt Handler Mask Register (IHMSK) (18 <sub>16</sub> ) 31                                              |      |
| Interrupt Handler Mask Register (IHMSK) (18 <sub>16</sub> ) 32                                              |      |
| <b>Frigger Source Register (TSRC) (2016)</b> 32                                                             |      |
| Broadcast Trigger Mask Register (BTMSK) (24 <sub>16</sub> )33                                               |      |
| Demand Messages                                                                                             | .33  |

| APPENDIX                                                  |                   |
|-----------------------------------------------------------|-------------------|
| ID/Logical Address Register (Offset 00 <sub>16</sub> ) 35 |                   |
| Serial Number High Register (Offset 0A <sub>16</sub> )    | 36                |
| Version Number Register (Offset 0E16) 36                  |                   |
| Subclass Register (Offset 1E16) 37                        |                   |
| Control/Status Register (CSR) (0016) 37                   |                   |
| Burst Count Register (BCT) (04 <sub>16</sub> ) 38         |                   |
| Delay Count Register (DCT) (0816) 38                      |                   |
| Total Transfer Count Register (TTCR) (0C16)               | 38                |
| Demand FIFO Register (DFR) (1416) 38                      |                   |
| Trigger Source Register (TSRC) (20 <sub>16</sub> ) 39     |                   |
| Broadcast Trigger Mask Register (BTMSK) (241              | <sub>6</sub> ) 39 |
|                                                           |                   |

# LIST OF TABLES

| Table 1 Status LED Definitions                           | 6   |
|----------------------------------------------------------|-----|
| Table 2 SMB Connector Descriptions                       | 7   |
| Table 3 VXIbus P1 Connector                              | 7   |
| Table 4 VXIbus P2 Connector                              | 8   |
| Table 5 Strap Configuration                              | .12 |
| Table 6 Bus Request Level Selections                     | .15 |
| Table 7 I/O TTL Trigger Line Selections                  | .16 |
| Table 8 CLK10 Configurations                             | .16 |
| Table 9 Configuration Registers Configuration (A16)Space | .18 |
| Table 10 Internal Registers                              | .27 |

#### Model V120 UNPACKING AND INSTALLATION

The Model V120 is shipped in an anti-static bag within a Styrofoam packing container. Carefully remove the module from its anti-static bag and prepare to set the various options to conform to the operating environment.

#### **Logical Address Switches**

The V120 is a Slot 0 capable device. It is shipped from the factory configured for Slot 0 operation with its Logical Address Switches statically configured for Logical Address 0. If the V120 is to operate as the Slot 0 device, then its Logical Address must be set for Logical Address 0. If it is not, these switches must be set for Logical Address 1 to 255. Logical Address 255 can be shared by multiple devices in a system that supports Dynamic Configuration. If a non-Slot 0 V120 is to be used in a system that does not support Dynamic Configuration, or in a system where static configuration of the module is desired, the Logical Address must be manually established. This is accomplished by manipulating the eight rocker switches located under the access hole in the module's right-side ground shield. (Refer to Figure 1.)

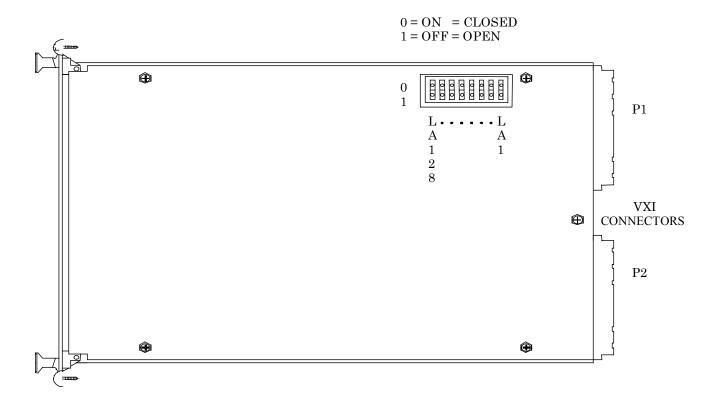



Figure - 1 V120 Logical Address Switches

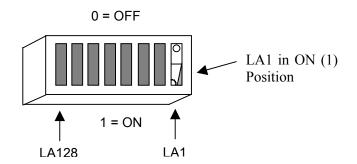



Figure 2 - V120 Switch Locations

These switches represent a binary combination of numbers that range from zero to 255. Use a scribe or other appropriate instrument to set the Logical Address to the desired value. A switch pushed down on the OPEN side is ON (1). For a Logical Address of zero, all switches should be pushed down on the closed (top as viewed in Figure 1) side.

The Logical Address is used to define the A16 base address of the V120's VXIbus defined configuration registers. Further explanation on calculating this base address can be found in the section on VXIbus Configuration Registers.

#### **Module Insertion**

The V120 is a C-sized, single width VXIbus module. This module is shipped from the factory configured for Slot 0 operation. Installing a Slot 0 configured V120 in any other slot (other than Slot 0) can result in damage to it and other components in the system. Refer to the section on V120 Slot 0 Configuration for more information.

At KineticSystems, static precautions are observed from production, test, and packaging of the module. This includes using static proof mats and wrist straps. Please observe these same precautions when unpacking and installing the module whenever possible.



**CAUTION:** To guard against electrostatic discharge if no wrist straps are available, touch the anti-static bag to a metal part of the VXI chassis before removing the V120.

The Model V120 is shipped in an anti-static bag within a Styrofoam packing container.

The VXIbus backplane must be properly configured before inserting a module and applying power. The Bus Grant and Interrupt Acknowledge daisy chain jumpers should be installed in any unoccupied slot.

#### FRONT PANEL INFORMATION

This section describes the connectors, status LEDs, etc., that appear on the front panel and their functions.

#### **Node Address Switch**

The Node Address Switch establishes the V120's highway node address. This switch contains two digits in hexadecimal format. Each slave on the highway must have a unique node address, ranging from 1 (01<sub>16</sub>) to 127 (7 $F_{16}$ ). Node address 0 (00<sub>16</sub>) is reserved and should not be used.

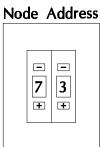



Figure 3 - V120 Node Address Switch

Figure 3 shows the node address switch set to a value of  $73_{16}$  (115). Notice the most significant digit is on the left and the least is on the right.

#### LEDs

The V120 has eight LEDs located on the front panel to display status information. All LEDs are one-shot extended. Table 1 lists each LED and defines when they are active (lighted).

| LED Mnemonic (Color) | Description                                                                     |
|----------------------|---------------------------------------------------------------------------------|
| Failed (R)           | Failed- Onboard DSP is executing or has failed its self-test.                   |
| Add Rec (G)          | Address Recognized - Transfer to V120's Configuration Registers was successful. |
| Dmd (R)              | Demand - A demand message has been placed in the Demand FIFO.                   |
| Sync (G)             | Synchronization - Indicates valid highway activity or synchronization message.  |
| Hwy Add Rec (G)      | Highway Address Recognized - V120 recognizes that it is the addressed node.     |
| Error (R)            | Error - A parity error has occurred on the highway.                             |

Table 1. - Status LED Definitions

#### *Model V120* Option Specific Connectors

The V120 has a set of front panel connectors used for clocks and triggers. The V120 has four SMB connectors.

#### **SMB** Connector Option

All V120-Axxx options have front panel mounted SMBs. Table 2 describes the function of each.

| Mnemonic   | Description                                                                        |
|------------|------------------------------------------------------------------------------------|
| Clk I/O    | 10 MHz system clock - Can be configured with straps for input or output.           |
| Trig I/O   | Trigger Input/Output - Configured with straps to route a TTL Trigger Line in/ out. |
| Trig Out B | Internal Trigger Output B signal - See Internal Register description.              |
| Trig Out A | Internal Trigger Output A signal - See Internal Register description.              |

 Table 2. - SMB Connector Descriptions

Each of these signals appears on the center pin of the SMB connector. The shell of these connectors is connected to module ground.

#### Fiberoptic

The V120's two front panel ST type connectors serve as the input and output for the fiberoptic highway. The connector labeled Hwy In is the highway input. This input should be connected to the highway output connector of the driver or another slave. Conversely, the Hwy Out is the output connector and should be connected to a driver or slave highway input connector. Fiberoptic highway connections should be made using  $62.5/100\mu m$  fiberoptic cables.

#### VXIBUS CONNECTORS

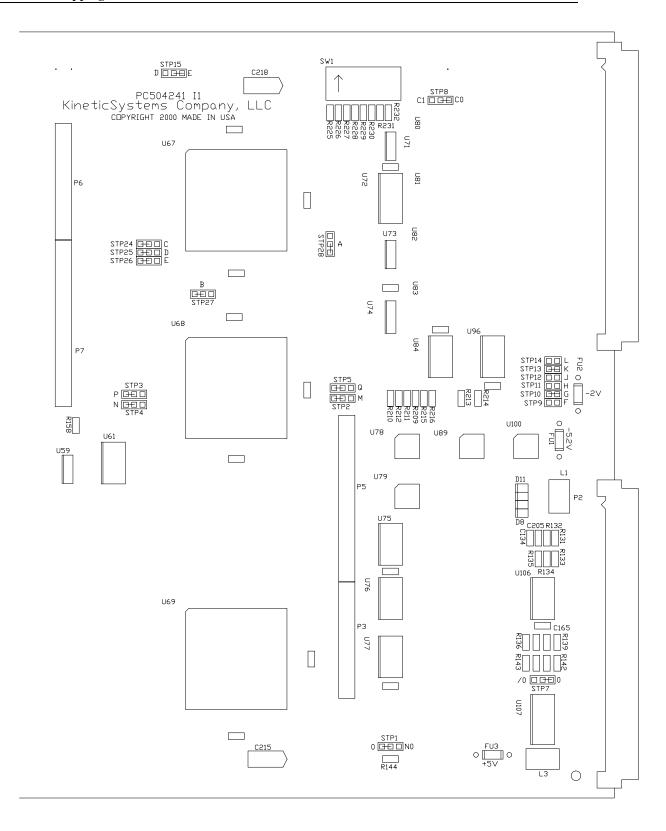
The V120 is a C-sized VXIbus module and uses both the P1 and P2 connectors. Tables 3 and 4 list the connections made.

#### VXIbus Connectors P1, P2 Pinouts

| Pin<br>Number | ROWa Signal<br>Mnemonic | ROWb Signal<br>Mnemonic | ROWc Signal<br>Mnemonic | Pin<br>Number |
|---------------|-------------------------|-------------------------|-------------------------|---------------|
| 1             | D00                     | BBSY*                   | D08                     | 1             |
| 2             | D01                     | BCLR*                   | D09                     | 2             |
| 3             | D02                     | ACFAIL*                 | D10                     | 3             |
| 4             | D03                     | BG0IN*                  | D11                     | 4             |
| 5             | D04                     | BG0OUT*                 | D12                     | 5             |

| Model | V120 |
|-------|------|
| mouci | 140  |

| Pin<br>Number | ROWa Signal<br>Mnemonic | ROWb Signal<br>Mnemonic | ROWc Signal<br>Mnemonic | Pin<br>Number |
|---------------|-------------------------|-------------------------|-------------------------|---------------|
| 6             | D05                     | BG1IN*                  | D13                     | 6             |
| 7             | D06                     | BG1OUT*                 | D14                     | 7             |
| 8             | D07                     | BG2IN*                  | D15                     | 8             |
| 9             | GND                     | BG2OUT*                 | GND                     | 9             |
| 10            | SYSCLK                  | BG3IN*                  | SYSFAIL*                | 10            |
| 11            | GND                     | BG3OUT*                 | BERR*                   | 11            |
| 12            | DS1*                    | BR0*                    | SYSRESET*               | 12            |
| 13            | DS0*                    | BR1*                    | LWORD*                  | 13            |
| 14            | WRITE*                  | BR2*                    | AM5                     | 14            |
| 15            | GND                     | BR3*                    | A23                     | 15            |
| 16            | DTACK*                  | AM0                     | A22                     | 16            |
| 17            | GND*                    | AM1                     | A21                     | 17            |
| 18            | AS*                     | AM2                     | A20                     | 18            |
| 19            | GND                     | AM3                     | A19                     | 19            |
| 20            | IACK*                   | GND                     | A18                     | 20            |
| 21            | IACKIN*                 | SERCLK (1)              | A17                     | 21            |
| 22            | IACKOUT*                | SERDAT* (1)             | A16                     | 22            |
| 23            | AM4                     | GND                     | A15                     | 23            |
| 24            | A07                     | IRQ7*                   | A14                     | 24            |
| 25            | A06                     | IRQ6*                   | A13                     | 25            |
| 26            | A05                     | IRQ5*                   | A12                     | 26            |
| 27            | A04                     | IRQ4*                   | A11                     | 27            |
| 28            | A03                     | IRQ3*                   | A10                     | 28            |
| 29            | A02                     | IRQ2*                   | A09                     | 29            |
| 30            | A01                     | IRQ1*                   | A08                     | 30            |
| 31            | -12 V                   | +5 V STDBY              | +12 V                   | 31            |
| 32            | +5 V                    | +5 V                    | +5 V                    | 32            |


Table 4. - VXIbus P2 Connector

| Pin<br>Number | ROWa Signal<br>Mnemonic | ROWb Signal<br>Mnemonic | ROWc Signal<br>Mnemonic | Pin<br>Number |
|---------------|-------------------------|-------------------------|-------------------------|---------------|
| 1             | ECLTRG0                 | +5 V                    | CLK10+                  | 1             |
| 2             | -2 V                    | GND                     | CLK10-                  | 2             |
| 3             | ECLTRIG1                | RSV1                    | GND                     | 3             |
| 4             | GND                     | A24                     | -5.2 V                  | 4             |
| 5             | LBUSA00                 | A25                     | LBUSC00                 | 5             |
| 6             | LBUSA01                 | A26                     | LBUSC01                 | 6             |
| 7             | -5.2 V                  | A27                     | GND                     | 7             |

Model V120

| Pin<br>Number | ROWa Signal<br>Mnemonic | ROWb Signal<br>Mnemonic | ROWc Signal<br>Mnemonic | Pin<br>Number |
|---------------|-------------------------|-------------------------|-------------------------|---------------|
| 8             | LBUSA02                 | A28                     | LBUSC02                 | 8             |
| 9             | LBUSA03                 | A29                     | LBUSC03                 | 9             |
| 10            | GND                     | A30                     | GND                     | 10            |
| 11            | LBUSA04                 | A31                     | LBUSC04                 | 11            |
| 12            | LBUSA05                 | GND                     | LBUSC05                 | 12            |
| 13            | -5.2 V                  | +5 V                    | -2 V                    | 13            |
| 14            | LBUSA06                 | D16                     | LBUSC06                 | 14            |
| 15            | LBUSA07                 | D17                     | LBUSC07                 | 15            |
| 16            | GND                     | D18                     | GND                     | 16            |
| 17            | LBUSA08                 | D19                     | LBUSC08                 | 17            |
| 18            | LBUSA09                 | D20                     | LBUSC09                 | 18            |
| 19            | -5.2 V                  | D21                     | -5.2 V                  | 19            |
| 20            | LBUSA10                 | D22                     | LBUSC10                 | 20            |
| 21            | LBUSA11                 | D23                     | LBUSC11                 | 21            |
| 22            | GND                     | GND                     | GND                     | 22            |
| 23            | TTLTRG0*                | D24                     | TTLTRG1*                | 23            |
| 24            | TTLTRG2*                | D25                     | TTLTRG3*                | 24            |
| 25            | +5 V                    | D26                     | GND                     | 25            |
| 26            | TTLTRG4*                | D27                     | TTLTRG5*                | 26            |
| 27            | TTLTRG6*                | D28                     | TTLTRG7*                | 27            |
| 28            | GND                     | D29                     | GND                     | 28            |
| 29            | RSV2                    | D30                     | RSV3                    | 29            |
| 30            | MODID                   | D31                     | GND                     | 30            |
| 31            | GND                     | GND                     | +24 V                   | 31            |
| 32            | SUMBUS                  | +5 V                    | -24 V                   | 32            |

#### *Model V120* Figure - 4 V120 Strapping View 1



#### *Model V120* STRAPPING INFORMATION

The V120 is factory configured as shown in Figure 4.

Figure 4 shows the factory-configured positions for straps A-E and STP 1,8. The configuration is as follows:

V120 is a Slot 0 device.
 V120 is an Interrupt Handler.
 Bus Request Level is set to 3.
 Backplane CLK 10 signal is an output on front panel Clk I/O.
 Positions 1 through 8 on SW1 are pushed down on top (set to zeros) so V120 is at Logical Address zero.

Figure 4 shows the factory configured strapping for the TTL Trigger Line and CLK 10 selections. This configuration allows the V120 to do the following.

- 1.) V120 drives backplane Clk10+/-.
- 2.) TTL Trigger Line 0 is routed to front panel Trig I/O as an output.
- 3.) V120 has pull-up enabled for Slot 0 MODID line.

Figure 4 shows the factory-configured positions for the SYSRESET and emulator straps. This configuration allows the V120 to drive the backplane SYSRESET signal.

| Table 5 Strap Configuration |                             |                                     |  |
|-----------------------------|-----------------------------|-------------------------------------|--|
| Label                       | <b>Reference Designator</b> | Function                            |  |
| А                           | STP28                       | * Arbiter Enable                    |  |
| В                           | STP27                       | * Interrupt Handler                 |  |
| С                           | STP24                       | * Slot 0                            |  |
| D                           | STP25                       |                                     |  |
| Е                           | STP26                       | Bus Request Level                   |  |
| F                           | STP9                        |                                     |  |
| G                           | STP10                       |                                     |  |
| Н                           | STP11                       |                                     |  |
| J                           | STP12                       |                                     |  |
| K                           | STP13                       | * CLK10 +/-                         |  |
| L                           | STP14                       | CLKI0 17-                           |  |
| М                           | STP2                        |                                     |  |
| N                           | STP4                        | TTL Trigger Line                    |  |
| Р                           | STP3                        |                                     |  |
| Q                           | STP5                        | TTL Trigger I/O                     |  |
| /0 0                        | STP7                        | * Slot 0 MODID Line<br>Resistor     |  |
| N0 0                        | STP1                        | V120 MODID Line                     |  |
| CI C0                       | STP8                        | CLK10 I/O                           |  |
| D E                         | STP15                       | * SYSRESET (System<br>Reset Enable) |  |

Table 5. - Strap Configuration

### **Strap Descriptions**

| V120 Strap Descriptions                                                                                                 |  |  |
|-------------------------------------------------------------------------------------------------------------------------|--|--|
| Arbiter Enable Enables V120 to function as the bus arbiter deciding which requester is granted control of the data bus. |  |  |
| Interrupt Handler Enables V120 to be an Interrupt Handler.                                                              |  |  |
| Slot 0 Enables the V120 to be a Slot 0 device.                                                                          |  |  |

#### *Model* V<u>120</u>

|                   | V120 Strap Descriptions                                                                                                                  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Bus Request Level | Specifies the bus request level the V120 will use when requesting the data bus.                                                          |
| CLK10 +/-         | Configures routing for CLK10 +/- to P2 connector.                                                                                        |
| TTL Trigger Line  | Specifies the TTL trigger line to be used in conjunction with the front panel Trigger I/O.                                               |
| TTL Trigger I/O   | Determines the direction of the front panel Trigger I/O.                                                                                 |
| Slot 0 MODID      | Enables pull-up resistor connected to V120 MODID line when used<br>as a Slot 0 device.                                                   |
| V120 MODID Line   | Used for testing purposes only. Should remain in the factory-<br>configured position to connect the MODID line to the MODID<br>resistor. |
| CLK 10 I/O        | Configures front panel CLK10 signal as an input or an output.                                                                            |
| SYSRESET          | Allows an onboard reset signal to be routed to *SYSRESET signal on backplane.                                                            |

#### **VXIbus Slot 0 Configuration**

The V120 is shipped from the factory configured for Slot 0 operation. If is to be installed in any other slot, is must be properly configured before installation.



**Warning:** If the V120 is configured for Slot 0 operation, installation in any other slot may result in damage to the V120, the Slot 0 device, and the VXIbus backplane.

A VXIbus Slot 0 device functions as the VMEbus System Controller. The System Controller is the VMEbus Arbiter for the data transfer bus. The controller also provides both the 16-MHz system clock (SYSCLK) and system reset (SYSRESET). The Slot 0 Device must also implement a MODID register to monitor and control the VXIbus MODID lines.

#### VXIbus Slot 0 Configuration

The V120 is shipped from the factory configured for Slot 0 operation. If is to be installed in any other slot, is must be properly configured before installation.



**Warning:** If the V120 is configured for Slot 0 operation, installation in any other slot may result in damage to the V120, the Slot 0 device, and the VXIbus backplane.

A VXIbus Slot 0 device functions as the VMEbus System Controller. The System Controller is the VMEbus Arbiter for the data transfer bus. The controller also provides both the 16-MHz system clock (SYSCLK) and system reset (SYSRESET). The Slot 0 Device must also implement a MODID register to monitor and control the VXIbus MODID lines.

#### V120 Slot 0 Configuration

To configure the V120 for Slot 0 operation,

- 1. Strap A (STP28) in down position V120 is bus arbiter.
- 2. Strap C (STP24) in left position V120 is Slot 0 device.
- 3. Strap D E (STP15) in right position V120 drives \*SYSRESET.
- 4. Strap /0 0 (STP7) in right position Enable Slot 0 MODID pull-up resistor.

To configure the V120 for Non-Slot 0 operation,

- 1. Strap A (STP28) in up position V120 is not the bus arbiter.
- 2. Strap C (STP24) in right position V120 is not a Slot 0 device.
- 3. Strap D E (STP15) in left position V120 does not drive \*SYSRESET.
- 4. Strap /0 0 (STP7) in left position Disable Slot 0 MODID pull-up resistor.

#### *Model V120* Bus Request Level

Straps D and E (STP25 and STP26, respectively) are used to specify the VMEbus Request Level the V120 uses. Table 8 shows how these straps determine the request level.

| I au             | le 0 Dus Reu     | uest Level Selections    |
|------------------|------------------|--------------------------|
| Strap Po         | sition           | <b>Bus Request Level</b> |
| Strap D<br>(BR1) | Strap E<br>(BR0) |                          |
| Left             | Left             | Request Level 3          |
| Left             | Right            | Request Level 2          |
| Right            | Left             | Request Level 1          |
| Right            | Right            | Request Level 0          |

Table 6. - Bus Request Level Selections

#### Interrupt Handler

The Interrupt Handler feature may be defeated by means of a strap on the V120. The default configuration is to have the Interrupt Handler enabled - Strap B in the left position. If the Interrupt Handler needs to be disabled, Strap B must be placed in the right position.

#### TTL Trigger I/0

The V120 can be configured to route the front panel Trigger I/O to a selected TTL Trigger line or take a selected TTL Trigger Line and route it to the front panel Trigger I/O. Straps M,N, and P are used to select a particular TTL Trigger Line. Strap Q is used to specify the direction of the TTL Trigger Line. When Strap Q is in the left position, the selected TTL Trigger Line is routed out to the front panel Trigger I/O signal. Conversely, the Strap Q in the right position allows the front panel Trigger I/O to source a trigger on the selected line. Table 7 shows how combinations of Straps M, N, and P select the TTL Trigger Line to be used. The left position of these straps is interpreted as a logical 0 and the right as a 1.

| S           | TRAP POSIT  |             |                  |
|-------------|-------------|-------------|------------------|
| M<br>(TTL2) | P<br>(TTL1) | N<br>(TTL0) | TTL TRIGGER LINE |
| Left        | Left        | Left        | 7                |
| Left        | Left        | Right       | 6                |
| Left        | Right       | Left        | 5                |
| Left        | Right       | Right       | 4                |
| Right       | Left        | Left        | 3                |
| Right       | Left        | Right       | 2                |
| Right       | Right       | Left        | 1                |
| Right       | Right       | Right       | 0                |

Table 7. - I/O TTL Trigger Line Selections

#### **CLK10 Source**

As the Slot 0 device, the V120 must supply the VXIbus defined differential ECL CLK10 source. This signal may originate from an onboard 10MHz source or from the front panel CLK10 I/O signal. Straps F through L are used to determine if the V120 supplies CLK10 and the if the source is from the onboard source or front panel CLK10 I/O signal. Only two shorting straps are supplied for strap locations F through L. When one of these straps is placed in location F, G, or H, the other strap must be in position J, K, or L, respectively. Table 10 defines the only valid combinations that may be used to configure straps F through L. If the front panel CLK10 I/O signal is used as the source, the CI-CO strap must be in the CI (left) position. If the front panel signal is not used as the VXIbus CLK10 signal to appear as an output on the V120's front panel CLK10 I/O signal, regardless of which slot the V120 is installed.

| Straps Installed in | Function                                                           |
|---------------------|--------------------------------------------------------------------|
| F and J             | V120 is source for VXIbus CLK10 from front panel CLK10 I/O signal. |
| G and K             | V120 is source for VXIbus CLK10 from onboard 10Mhz source.         |
| H and L             | V120 is not the source for VXIbus CLK10.                           |

Table 8. - CLK10 Configurations

#### Model V120 PROGRAMMING INFORMATION

#### VMEbus/VXIbus Addressing

Of the defined VXI*bus* Configuration Registers, the V120 implements those required for extended register-based devices. The V120 does not contain any registers located in A24 or A32 address space.

Access to the Configuration Registers for all VXI*bus* modules is available through the VMEbus short address space. The register addresses are located in the upper 16 kilobytes of the A16 address range (C000<sub>16</sub> to FFFF<sub>16</sub>). The setting of the Logical Address switch, or the contents of the Logical Address Register (see below) are mapped into Address lines A6 through A13, thereby establishing a base address for the module somewhere in the range of C000<sub>16</sub> to FFC0<sub>16</sub>.

#### A16 Base Address

The bit pattern for the A16 base address is shown below:

| 15      | 14      | 13        | 12       | 11       | 10       | 9       | 8       | 7       | 6       | 5       | 4       | 3       | 2       | 1       | 0 |
|---------|---------|-----------|----------|----------|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|
| A<br>15 | A<br>14 | A<br>13   | A<br>12  | A<br>11  | A<br>10  | A<br>09 | A<br>08 | A<br>07 | A<br>06 | A<br>05 | A<br>04 | A<br>03 | A<br>02 | A<br>01 |   |
| 1       | 1       | LA<br>128 | LA<br>64 | LA<br>32 | LA<br>16 | LA<br>8 | LA<br>4 | LA<br>2 | LA<br>1 | 0       | 0       | 0       | 0       | 0       | 0 |

Bits 15 through 1 correspond to the VME address lines A15-A01.

Bits 15 and 14 are set to one (VXI defined).

Bits 13 through 6 are user selectable via the Logical Address switches and the ID/Logical Address register.

Bits 5 through zero are set to zero to indicate a block of 64 bytes.

#### **VXIbus Configuration Registers**

Configuration Registers are required by the VXI*bus* specification so that the appropriate levels of system configuration can be accomplished. The Configuration Registers in the V120 are offset from the base address. Note: the V120 only responds to these addresses if the Short Nonpriviledged Access (29<sub>16</sub>) or Short Supervisory Access (2D<sub>16</sub>) Address Modifier Codes are set for the VMEbus cycle. Table 1 shows the applicable Configuration Registers present in the V120, their offset from the base (Logical) address, and their Read/Write capabilities.

| A16                                 | Write/Read   | Register Name                |
|-------------------------------------|--------------|------------------------------|
| 0016                                | Write/Read   | ID/Logical Address Register  |
| 0216                                | Read Only    | Device Type Register         |
| 0416                                | Write/Read   | Status/Control Register      |
| 0616                                | N/A          | Reserved                     |
| 0816                                | Write/Read * | Attribute / MODID Register * |
| 0A <sub>16</sub>                    | Read Only    | Serial Number High Register  |
| 0C <sub>16</sub>                    | Read Only    | Serial Number Low Register   |
| 0E <sub>16</sub>                    | Read Only    | Version Number Register      |
| 10 <sub>16</sub> - 19 <sub>16</sub> | Read Only    | Reserved Registers           |
| $1A_{16}$                           | Read Only    | Interrupt Status Register    |
| 1C <sub>16</sub>                    | Write/Read   | Interrupt Control Register   |
| $1E_{16}$                           | Read Only    | Subclass Register            |
| 2016                                | Read Only    | Suffix Register High         |
| 2216                                | Read Only    | Suffix Register Low          |
| 24 <sub>16</sub> - 3F <sub>16</sub> | N/A          | Reserved                     |

 Table 9. - Configuration Registers Configuration (A16)Space

\* If the V120 is configured as a Slot0 Controller, the register at offset  $08_{16}$  is the write/read MODID register. For non-Slot0 configurations, the register at offset  $08_{16}$  is the read-only Attribute register.

#### ID/Logical Address Register (Offset 00<sub>16</sub>)

The ID/Logical Address Register, which is located at offset  $00_{16}$  from the logical base address, serves two functions, depending on the direction of the VME transfer. When executing a read operation to this register, the data returned indicates the Device Class, the Address Space requirements outside of A16 space, and the Manufacturer's Identification. A write operation to this register is only executed during a dynamic configuration sequence. During the configuration sequence, the Resource Manager assigns a logical address to the V120 by writing the logical address into the lower 8-bits of this register. The format and bit assignments for this ID/Logical Address register are shown in the following diagram. Since this register has write-only and read-only bits, two bit patterns are shown.

On Read transactions:

|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | 0 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 |

| Bit(s) | Mnemonic          | Meaning                                              |
|--------|-------------------|------------------------------------------------------|
| 15,14  | Device Class      | This is an Extended Register Based device.           |
| 13,12  | Address Space     | The V120 does not require A24/A32 addressment space. |
| 11-0   | Manufacturer's ID | 3881 (F29 <sub>16</sub> ) for KineticSystems.        |

On Write transactions:

| 15 | 14       | 13 | 12 | 11 | 10 | 9 | 8 | 7 | б        | 5        | 4        | 3        | 2        | 1        | 0        |
|----|----------|----|----|----|----|---|---|---|----------|----------|----------|----------|----------|----------|----------|
|    | Not Used |    |    |    |    |   |   |   | LA<br>64 | LA<br>32 | LA<br>16 | LA<br>08 | LA<br>04 | LA<br>02 | LA<br>01 |

For Write transfers to offset  $00_{16}$  of the V120, bits 15 through 08 are not used. A write to these bits has no effect on the V120. In Dynamically Configured Systems (i.e., the Logical Address switches were set to a value of 255), bits 07 through 00 are written with the new Logical Address value. This write operation is typically executed by a Resource Manager.

#### Device Type Register (Offset 02<sub>16</sub>)

The Device Type Register is a read-only register located at an offset of  $02_{16}$  from the logical base address. This register contains the Model Code of the V120. Since the V120 is an A16-only device, the entire 16 bits of this register are used for the Model Code.

Model Codes for VXI Slot 0 devices must be in the range of  $00_{16}$  to FF<sub>16</sub>. Model Codes for VXI non-Slot0 devices must be in the range of  $100_{16}$  to FFFF<sub>16</sub>. When the V120 is configured for non-Slot 0 functionality, the Model Code returned when reading this register is  $160_{16}$ . To follow the VXI specification for Model Codes, the  $100_{16}$  bit is set to zero when the V120 is configured for Slot 0 operation.

| V120 Model Codes: | 120 <sub>16</sub> for non-Slot 0 Operation |
|-------------------|--------------------------------------------|
|                   | 020 <sub>16</sub> for Slot 0 Operation     |

The following diagram shows the bit pattern of the Device Type Register for both Slot0 and non-Slot0 configurations.

For Slot0 configurations:

| 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|---------------------------------|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
|                                 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |

For non-Slot0 configurations:

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
| 0  | 0  | 0  | 0  | 0  | 0  | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |

#### Status/Control Register (Offset 0416)

The Status/Control Register, which is located at an offset of  $04_{16}$  from the logical base address, contains write-only, read-only, and write/read bits. The following describes the bits for write and read operations.

This bit pattern shows the register layout for read accesses to the Status/Control Register.

On Read transactions:

| J | 15 | 14             | 13 | 12 | 11 | 10 | 9 | 8 | 7 | б | 5 | 4 | 3         | 2        | 1          | 0                     |
|---|----|----------------|----|----|----|----|---|---|---|---|---|---|-----------|----------|------------|-----------------------|
|   | 0  | MOD<br>ID<br>* | 1  | 1  | 1  | 1  | 1 | 1 | 1 | 1 | 1 | 1 | Rea<br>dy | Pas<br>s | SYS<br>INB | Sof<br>t<br>Res<br>et |

| Bit(s) | Mnemonic   | Meaning                                                                                                                                                                                                   |
|--------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15     | Not Used   | This bit is not used and should be written as a zero.                                                                                                                                                     |
|        |            | This bit is set to a one if the module is <u>not</u> selected with the MODID                                                                                                                              |
| 14     | MODID*     | line on the VXI P2 connector. A zero indicates that the device is                                                                                                                                         |
|        |            | selected by a high state on the P2 MODID line.                                                                                                                                                            |
| 13-4   | Not Used   | These bits are not used and read as ones                                                                                                                                                                  |
| 3      | Ready      | READY is a read-only bit that is set to a one indicating successful                                                                                                                                       |
| 5      | Ready      | completion of register initialization.                                                                                                                                                                    |
| 2      | Pass       | Pass is a read-only bit that is set to a one after the V120 has<br>completed its power-on self-test without any errors. If errors occur,<br>this bit is set to a zero and the SYSFAIL signal is asserted. |
| 1      | SYS INB    | Reading this bit as a one indicates that the V120 may not drive the SYSFAIL* line.                                                                                                                        |
| 0      | Soft Reset | This write/read bit is used to reset the V120. Reading this bit as a                                                                                                                                      |
|        |            | one indicates that the V120 is currently in the RESET state. Setting                                                                                                                                      |
|        |            | this bit to a zero removes the V120 from the RESET state.                                                                                                                                                 |

This bit pattern shows the register layout for write accesses to the Status/Control Register.

On Write transactions:

| 15 | 14 | 13 | 12 | 11 | 10 | 9   | 8    | 7 | б | 5 | 4 | 3 | 2 | 1          | 0                     |
|----|----|----|----|----|----|-----|------|---|---|---|---|---|---|------------|-----------------------|
|    |    |    |    |    |    | Not | Used |   |   |   |   |   |   | SYS<br>INB | Sof<br>t<br>Res<br>et |

| <i>Model V120</i><br>Bit(s) | Mnemonic   | Meaning                                                                                                                                                                                          |
|-----------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15-2                        | Not Used   | These bits are not used for write operations.                                                                                                                                                    |
| 1                           | SYS INB    | SYSFAIL INHIBIT is a write-only bit that is set to a one to inhibit the V120 from asserting the VXI SYSFAIL* signal.                                                                             |
| 0                           | Soft Reset | This write/read bit used to reset the V120. Reading this bit as a one indicates that the V120 is currently in the RESET state. Setting this bit to a zero removes the V120 from the RESET state. |

#### Attribute Register (Offset 08<sub>16</sub>)

The Attribute Register is located at an offset of  $08_{16}$  from the logical base address. This register is only available when the V120 is configured as a non-Slot0 device. When the V120 is configured for Slot 0 operation, the Attribute Register is replaced with the MODID (Module Identification) Register. Refer to the MODID Register section of this manual for additional information.

The Attribute Register is a read-only register that contains information regarding the interrupt capabilities of the V120.

The format of the Attribute Register is shown in the following diagram.

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | б | 5 | 4 | 3 | 2   | 1   | 0   |
|----|----|----|----|----|----|---|---|---|---|---|---|---|-----|-----|-----|
| 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | IR* | IH* | IS* |

| Bit(s) | Mnemonic | Meaning                                                                |
|--------|----------|------------------------------------------------------------------------|
| 15-3   | Not Used | These bits are not used and read as ones.                              |
| 2      | IR*      | The V120 has interrupter control capabilities and returns this bit set |
|        |          | to zero.                                                               |
| 1      | IH*      | The V120 has interrupt handling capabilities and returns this bit set  |
| 1      | 111      | to zero.                                                               |
| 0      | IS*      | The V120 has interrupt status capabilities and returns this bit set to |
| 0      | 15       | zero.                                                                  |

#### MODID Register (Offset 08<sub>16</sub>)

The MODID Register is located at an offset of  $08_{16}$  from the logical base address. This register is only available when the V120 is configured as a Slot0 device. When the V120 is configured for non-Slot0 operation, the MODID Register is replaced with the Attribute Register. Refer to the Attribute Register section of this manual for additional information.

The MODID Register is a write/read register used to control the MODID geographic addressing lines on the VXI P2 connector. Each of the 13 slots in the VXI chassis have an individual line that can be asserted and monitored through the MODID Register. Before any MODID lines can be asserted by the V120, the Output Enable bit (bit 13) of the register must be set to a one. When the outputs are enabled, setting a MODID bit location to a one asserts the associated MODID signal.

The data read from the MODID bits in this register do not necessarily reflect the state of the bits that were written to this register. Instead, a read of this register returns the actual state of each MODID line.

The following diagram shows the bit pattern for the MODID Register.

| 15     | 14           | 13                      | 12        | 11        | 10        | 9                                                                                                            | 8        | 7        | б        | 5        | 4        | 3        | 2        | 1        | 0        |  |  |
|--------|--------------|-------------------------|-----------|-----------|-----------|--------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|
| 1      | 1            | MODI<br>D<br>Enab<br>le | MID<br>12 | MID<br>11 | MID<br>10 | MID<br>9                                                                                                     | MID<br>8 | MID<br>7 | MID<br>6 | MID<br>5 | MID<br>4 | MID<br>3 | MID<br>2 | MID<br>1 | MID<br>0 |  |  |
| Bit(s) | )            | Mnemonic                |           |           |           | Mea                                                                                                          | ning     |          |          |          |          |          |          |          |          |  |  |
| 15,14  |              | Not Used                |           |           |           | These bits are not used and read as ones.<br>OUTPUT ENABLE is a write/read bit used to enable or disable the |          |          |          |          |          |          |          |          |          |  |  |
| 13     | MODID Enable |                         |           |           | ) from    |                                                                                                              | •        |          | •        |          | tting t  | his bit  | to a c   |          |          |  |  |

|      |         | enables the drivers and a zero disables them.                       |
|------|---------|---------------------------------------------------------------------|
|      |         | MODULE ID 12 through 0 are write/read bits used to assert and       |
| 12-0 | MID12-0 | monitor the MODID signals. Writing a bit with a one will assert (as |
|      |         | indicated by a high state) the corresponding slot's MODID line.     |

#### Serial Number High Register (Offset 0A<sub>16</sub>)

The Serial Number High Register, which is located at an offset of  $0A_{16}$  from the logical base address, is used in combination with the Serial Number Low Register to define the serial number of the V120 module. These registers are read-only and a write operation to these registers have no effect.

The format of the Serial Number High Register is shown in the following diagram.

| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| SN |
| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |

Bit(s)MnemonicMeaning15-0SN31-16SERIAL NUMBERS 31 through 16 are read-only bits that represent<br/>the upper 16-bits of the 32-bit module serial number. These bits are<br/>used in conjunction with the bits SN15-SN00 in the Serial Number<br/>Low register.

#### Serial Number Low Register (Offset 0C<sub>16</sub>)

The Serial Number Low Register, which is located at an offset of  $0C_{16}$  from the logical base address, is used in combination with the Serial Number High Register to define the serial number of the V120 module. These registers are read-only and a write operation to these registers has no effect.

The format of the Serial Number Low Register is shown in the following diagram.

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | б | 5 | 4 | 3 | 2 | 1 | 0 |
|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|

| Mode | l V120 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|------|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| SN   | SN     | SN | SN | SN | SN | SN | SN | SN | SN | SN | SN | SN | SN | SN | SN |
| 15   | 14     | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |

| Bit(s) | Mnemonic | Meaning                                                               |
|--------|----------|-----------------------------------------------------------------------|
| 15-0   | SN15-0   | SERIAL NUMBERS 15 through 0 are read-only bits that represent the     |
|        |          | upper 16-bits of the 32-bit module serial number. These bits are used |
|        |          | in conjunction with the bits SN31-SN16 in the Serial Number Low       |
|        |          | register                                                              |

register.

#### Version Number Register (Offset 0E<sub>16</sub>)

The Version Number Register, which is located at an offset of  $0E_{16}$  from the logical base address, is a read-only register that reflects the current revision level of the hardware and firmware residing on the V120. All write operations to this register are ignored.

The following shows the bit layout of the Version Number Register.

| Firmware Version Firmware Revision | Hardware Version | Hardware Revision |
|------------------------------------|------------------|-------------------|
|------------------------------------|------------------|-------------------|

| Bit(s) | Mnemonic          | Meaning                                                        |
|--------|-------------------|----------------------------------------------------------------|
| 15-12  | Firmware Version  | These bits reflect the module's firmware main revision level.  |
| 11-8   | Firmware Revision | These bits reflect the module's firmware revision number.      |
| 7-4    | Hardware Version  | These bits reflect the module's firmware main revision number. |
| 3-0    | Hardware Revision | These bits reflect the module's firmware revision number.      |

#### Interrupt Status Register (Offset 1A<sub>16</sub>)

The Interrupt Status Register is a 16-bit read-only register located at an offset of  $1A_{16}$  from the logical base address. This register is enabled onto the VMEbus during interrupt acknowledge cycles. The register contains the logical address of the V120 in the lower-bits of the register and the upper 8-bits indicate the cause/status of the interrupt. The V120 itself cannot generate an interrupt. This register is shown here for completeness only.

The format of the Interrupt Status Register is as follows:

| 15 | 14                     | 13 | 12 | 11 | 10 | 9 | 8 | 7         | 6        | 5        | 4        | 3       | 2       | 1       | 0       |
|----|------------------------|----|----|----|----|---|---|-----------|----------|----------|----------|---------|---------|---------|---------|
| 0  | 0                      | 0  | 0  | 0  | 0  | 0 | 0 | LA<br>128 | LA<br>64 | LA<br>32 | LA<br>16 | LA<br>8 | LA<br>4 | LA<br>2 | LA<br>1 |
|    | Interrupt Cause/Status |    |    |    |    |   |   |           |          | Devic    | e Logi   | cal Ad  | dress   |         |         |

| Bit(s) | Mnemonic     | Meaning                                                    |
|--------|--------------|------------------------------------------------------------|
| 15-8   | Cause/Status | These bits are always returned as zeros.                   |
| 7-0    | LA128-LA1    | These bits return the current logical address of the V120. |

#### Interrupt Control Register (Offset 1C<sub>16</sub>)

The Interrupt Control Register, which is located at offset  $1C_{16}$  from the logical base address, is a write/read register used to configure the V120 for interrupt generation. The Interrupt Request Level and

Interrupt Enable bit are located in this register. The V120 version of the slot0 controller does not generate interrupts on VXI. Therefore, no interrupts should be enabled in this register.

The format and description of the bits in the Interrupt Control Register are shown in the following diagram.

| 15     | 14  | 13   | 12       | 11        | 10        | 9                                                                                                                          | 8                                  | 7                        | 6        | 5                         | 4                         | 3        | 2        | 1        | 0                        |      |  |
|--------|-----|------|----------|-----------|-----------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------|----------|---------------------------|---------------------------|----------|----------|----------|--------------------------|------|--|
|        | Not | Used |          | FP<br>TGB | FP<br>TGA | ECL<br>1                                                                                                                   | ECL<br>0                           | TTL<br>7                 | TTL<br>6 | TTL<br>5                  | TTL<br>4                  | TTL<br>3 | TTL<br>2 | TTL<br>1 | TTL<br>O                 |      |  |
| Bit(s) |     | М    | nemor    | via       | I         | Mear                                                                                                                       | ning                               |                          | 1        |                           | I                         |          |          |          | 1                        |      |  |
| 15-8   |     |      | ot Used  |           |           |                                                                                                                            | 0                                  | re not                   | used ar  | nd read                   | as one                    | 25       |          |          |                          |      |  |
| 10 0   |     | 1 (  | 51 0 500 |           |           | INTERRUPT REQUEST ENABLE is a write/read bit used to<br>enable/disable the generation of an interrupt by the V120. Setting |                                    |                          |          |                           |                           |          |          |          |                          |      |  |
| 7      |     | IR   | EN*      |           |           | this b                                                                                                                     | oit to a                           |                          |          |                           |                           |          |          |          | 0. Set<br>disable        |      |  |
| 6      |     | No   | ot Usec  | 1         |           | INTE<br>used<br>asser                                                                                                      | bit is n<br>ERRUP<br>to selets whe | T REC<br>ect the<br>n an | desire   | F SEL<br>ed Inte<br>pt is | ECT 3<br>errupt<br>source | Reque    | st Lev   | el that  | e/read<br>the V<br>shows | /120 |  |
|        |     |      |          |           |           | ]                                                                                                                          | IRQS3                              | II                       | RQS2     | IR                        | QS1                       | Inte     | errupt F | Request  | Level                    |      |  |
|        |     |      |          |           |           |                                                                                                                            | 0                                  |                          | 0        |                           | 0                         |          | II       | RQ7      |                          |      |  |
|        |     | ID   | 0.00     | 0.001     |           |                                                                                                                            | 0                                  |                          | 0        |                           | 1                         |          | II       | RQ6      |                          |      |  |
| 5-3    |     | IR   | QS3-I    | RQSI      |           |                                                                                                                            | 0                                  |                          | 1        |                           | 0                         |          | Π        | RQ5      |                          |      |  |
|        |     |      |          |           |           |                                                                                                                            | 0 1 1                              |                          |          |                           |                           |          | Π        | RQ4      |                          |      |  |
|        |     |      |          |           |           |                                                                                                                            | 1                                  |                          | 0        |                           | 0                         |          | II       | RQ3      |                          |      |  |
|        |     |      |          |           |           |                                                                                                                            | 1                                  |                          | 0        |                           | 1                         |          | I        | RQ2      |                          |      |  |
|        |     |      |          |           |           |                                                                                                                            | 1                                  |                          | 1        |                           | 0                         |          | I        | RQ1      |                          |      |  |
|        |     |      |          |           |           |                                                                                                                            | 1                                  |                          | 1        |                           | 1                         |          | II       | RQ0      |                          |      |  |
| 2-0    |     | No   | ot Usec  | ł         |           | These                                                                                                                      | e bits a                           | re not                   | used ar  | nd read                   | as one                    | es.      |          |          |                          |      |  |

#### *Model V120* Subclass Register (Offset 1E<sub>16</sub>)

The Subclass Register, which is located at an offset of  $1E_{16}$  from the logical base address, is a read-only register that indicates the subclass of the V120. The V120 is an Extended Register Based Device as the following pattern indicates.

| 15         | 14       | 13   | 12         | 11         | 10         | 9          | 8        | 7          | б        | 5          | 4          | 3        | 2          | 1         | 0          |
|------------|----------|------|------------|------------|------------|------------|----------|------------|----------|------------|------------|----------|------------|-----------|------------|
| 1          | 1        | 1    | 1          | 1          | 1          | 1          | 1        | 1          | 1        | 1          | 1          | 1        | 1          | 1         | 0          |
| 15         | 14       | 13   | 12         | 11         | 10         | 9          | 8        | 7          | 6        | 5          | 4          | 3        | 2          | 1         | 0          |
| STS<br>PAS | RSV<br>D | RSVD | DMD<br>OFL | DMS<br>CLR | DMD<br>PND | DMD<br>ENA | RSV<br>D | INT<br>DEN | RSV<br>D | DLY<br>ENA | BST<br>ENA | RSV<br>D | SYS<br>FAL | RD<br>SFL | SYS<br>RST |

#### Suffix High Register (Offset 20<sub>16</sub>)

The Suffix High register, which is located at an offset of  $20_{16}$  from the logical base address, is a read-only register used in combination with the Suffix Low Register to determine the module model number suffix. The Suffix High Register contains the first two ASCII characters of the suffix and the Suffix Low Register contains the second two characters. The suffix shown is for the V120-A11 module.

The format and bit assignments for the Suffix High Register are as follows:

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
| 0  | 1  | 0  | 0  | 0  | 0  | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |

This read only register contains the first two ACSII characters of the module's suffix ("A" =  $4141_{16}$ ).

#### Suffix Low Register (Offset 22<sub>16</sub>)

The Suffix Low register, which is located at an offset of  $22_{16}$  from the logical base address, is a read-only register used in combination with the Suffix High Register to determine the module model number suffix. The Suffix Low Register contains the last two ASCII characters of the suffix and the Suffix High Register contains the first two characters. The suffix shown is for the V120-A11 module.

The format and bit assignments for the Suffix Low Register are as follows:

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
| 0  | 0  | 1  | 1  | 0  | 0  | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |

This read only register contains the last two ACSII characters of the module's suffix ("11" =  $3131_{31}$ ).

#### V120 Internal Register Description

All accesses to the V120 internal registers must be 32-bit accesses, even if the register is less than 32-bits in width. Table 10 shows the address allocations of the various internal registers on the V120.

| Address Location<br>(Base 16) | Access Capabilities | Register Name                           |
|-------------------------------|---------------------|-----------------------------------------|
| 00                            | Write/Read          | Control/Status Register (CSR)           |
| 04                            | Write Only          | Burst Count Register (BCT)              |
| 08                            | Write Only          | Delay Count Register (DCT)              |
| 0C                            | Read Only           | Total Transfer Count Register (TTCR)    |
| 10                            | N/U                 | Reserved                                |
| 14                            | Read Only           | Demand FIFO Register (DFR)              |
| 18                            | Write Only          | Interrupt Handler Mask Register (IHMSK) |
| 1C                            | N/U                 | Reserved                                |
| 20                            | Write Only          | Trigger Source Register (TSR)           |
| 24                            | Write Only          | Broadcast Trigger Mask (BTMSK)          |
| 28-2C                         | N/U                 | Reserved                                |

#### Control/Status Register (CSR) (00<sub>16</sub>)

The Control/Status Register (CSR) is located at address  $00_{16}$ . This write/read register is used to control and monitor various operations within the V120.

| 15  | 14  | 13   | 12  | 11  | 10  | 9   | 8   | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| STS | RSV | RSVD | DMD | DMS | DMD | DMD | RSV | INT | RSV | DLY | BST | RSV | SYS | RD  | SYS |
| PAS | D   |      | OFL | CLR | PND | ENA | D   | DEN | D   | ENA | ENA | D   | FAL | SFL | RST |

| Bit(s) | Mnemonic | Meaning                                                                |
|--------|----------|------------------------------------------------------------------------|
| 15     | STS PAS  | The Self-Test Passed is a read-only bit is set to a one when the self- |
| 14:13  | RSVD     | These bits are reserved and must be set to 0.                          |
| 12     | DMD OFL  | Demand Overflow is a read-only bit that is set to a one when the       |

| Model V120 |          |                                                                                                                                                                                                                                                                                     |
|------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit(s)     | Mnemonic | Meaning                                                                                                                                                                                                                                                                             |
|            |          | Demand FIFO is full and a subsequent demand is received. This bit<br>is cleared on power-up and by a write to the CSR with the DMD<br>CLR (Demand Clear) bit set to a one.                                                                                                          |
| 11         | DMD CLR  | Demand Clear is a write-only bit that is used to clear the contents of<br>the Demand FIFO and to clear the Demand Overflow (DMD OFL)<br>bit once it is set.                                                                                                                         |
| 10         | DMD PND  | Demand Pending is a read-only bit that is set to a one as long as a demand is stored in the Demand FIFO. This bit is cleared as long as no demands are present, after power-up, and after a write to the CSR with the DMD CLR bit set to a one.                                     |
| 9          | DMD ENA  | Demand Enable is a write/read bit which is used to enable/disable<br>the generation of highway demand messages when the Demand<br>FIFO contains data.                                                                                                                               |
| 8          | RSVD     | This bit is reserved and must be set to 0.                                                                                                                                                                                                                                          |
| 7          | INTDEN   | Interrupt Demand Enable is a write/read bit used to enable or disable<br>the storage of a demand entry in the Demand FIFO when a VXI<br>interrupt occurs. Setting this bit to a one enables the demand and a<br>zero disables it.                                                   |
| 6          | RSVD     | This bit is reserved and must be set to 0.                                                                                                                                                                                                                                          |
| 5          | DLY ENA  | Delay Enable is a write/read bit used to enable/disable the programmable delay associated with the receipt of broadcast trigger messages. Setting this bit to a zero disables the delay and a one enables it.                                                                       |
| 4          | BST ENA  | Burst Enable is a write/read bit used to enable/disable burst mode<br>transfers on the VXI bus. Setting this bit to a one enables a DMA<br>burst transfer of up to 256 transfers without relinquishing control of<br>the VXI bus. Setting this bit to a zero disables this feature. |
| 3          | RSVD     | This bit is reserved and must be set to 0.                                                                                                                                                                                                                                          |
|            | SYS FAL  | SYSFAIL is a write/read bit used to control the VXI bus SYSFAIL                                                                                                                                                                                                                     |
| 2          |          | signal. Setting this bit to a one asserts the signal, and unasserted                                                                                                                                                                                                                |
| 1          | RD SFL   | when the bit is set to zero.<br>Read SYSFAIL is a read-only bit that reflects the current state of the<br>VXI bus SYSFAIL signal.                                                                                                                                                   |
| 0          | SYS RST  | System Reset is a write-only bit, which is used to source the VXI bus<br>SYSRESET signal. Setting this bit to a one asserts the SYSRESET<br>signal. This bit is not latched.                                                                                                        |

#### Burst Count Register (BCT) (04<sub>16</sub>)

The Burst Count Register (BCT) is a write-only register located at address  $04_{16}$ . This register is used to specify the maximum number of transfers the V120 may execute on the VXI bus without relinquishing control of the VXI bus. This specification allows for up to 256 transfers without re-negotiation. To enable burst transfers, the BST ENA bit in the Control/Status Register must be set to a one prior to DMA operations.

# *Model V120* The following diagram shows the bit pattern for the Burst Count Register.

| Bit( | (s) | Μ  | [nemo | nic  |    | Meani | ing |          |          |          |          |          |          |          |          |
|------|-----|----|-------|------|----|-------|-----|----------|----------|----------|----------|----------|----------|----------|----------|
|      |     |    | Not   | Used |    |       |     | BCT<br>7 | BCT<br>6 | BCT<br>5 | BCT<br>4 | BCT<br>3 | BCT<br>2 | BCT<br>1 | BCT<br>0 |
| 15   | 14  | 13 | 12    | 11   | 10 | 9     | 8   | 7        | 6        | 5        | 4        | 3        | 2        | 1        | 0        |

| Dit(3) | Winemonie | Tricaning                                                       |
|--------|-----------|-----------------------------------------------------------------|
| 15-8   | Not Used  | These bits are not used.                                        |
|        |           | Burst Count 7 through 0 specifies the number of DMA transfers   |
| 7-0    | BCT7-0    | the V120 may execute before relinquishing control of the VXIbus |
|        |           | during a DMA operation.                                         |

#### Delay Count Register (DCT) (08<sub>16</sub>)

The Delay Count Register is a write-only register located at address  $08_{16}$  within the V120. This register is used to specify a delay count associated with the receipt of a Broadcast Trigger command from the Interconnect Highway. Once the trigger command is received from the highway, the delay counter starts counting down until it underflows. When the count is exhausted, the content of the Broadcast Trigger Register is used to source the corresponding signals. The delay count is enabled with the DLY ENA bit in the Control/Status Register. If the delay is not enabled in the CSR, the contents of the Broadcast Trigger Register are used immediately to source the corresponding signals.

The delay count specification is the number of 200 nanoseconds intervals to wait before sourcing the broadcast trigger data. This allows for a delay specification in the range of 200 nanoseconds to 13.1 milliseconds in 200 nanosecond increments.

There is a minimum delay time within the V120 before the broadcast trigger data is sourced. This time is 500 nanoseconds. Therefore, to calculate the time from receipt of the Broadcast Trigger message until the actual broadcast, data source is as follows:

Time = (500 nanoseconds) + (Delay Count X 200 nanoseconds)

The following diagram shows the bit pattern for the Delay Count Register.

| 15  | 14  | 13  | 12  | 11  | 10  | 9   | 8   | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| ОСТ | DCT |
| 15  | 14  | 13  | 12  | 11  | 10  | 9   | 8   | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |

| Bit(s) | Mnemonic | Meaning                                                                                                                                                                                                                                    |
|--------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15-0   | DCT15-0  | Delay Count 15 through 0 specify the amount of time to wait after<br>receiving a Broadcast Trigger message until the Broadcast Trigger<br>Mask Register data is sourced. This specification is the number of<br>200 nanosecond increments. |

#### Total Transfer Count Register (TTCR) (0C<sub>16</sub>)

The Total Transfer Count Register is a read-only register located at address  $0C_{16}$  within the V120. This register is used to verify the number of valid transfers that have occurred during a requested operation. If an error occurs during a requested operation, this register may then be read to determine the actual number of valid transfers before the error occurred. This value is the two's complement of number of words remaining to be transferred. This may then be subtracted from the original value to determine the valid transfer count.

The TTCR is originally loaded with the transfer count value that is received from the command message. As DMA transfers occur, this counter is incremented and DMA operations continue until the TTCR is exhausted.

| 31  | 30  | 29  | 28  | 27  | 26  | 25  | 24  | 23  | 22  | 21  | 20  | 19  | 18  | 17  | 16  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| TCR | TCT | TCR | TCR | TCR | TDR | TCR | TCR | TCR | TCR |
| 31  | 30  | 29  | 28  | 27  | 26  | 25  | 24  | 23  | 22  | 21  | 20  | 19  | 18  | 17  | 16  |
| 15  | 14  | 13  | 12  | 11  | 10  | 9   | 8   | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
| TCR |
| 15  | 14  | 13  | 12  | 11  | 10  | 9   | 8   | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |

The following diagram shows the bit pattern for the Total Transfer Count Register (TTCR).

| Bit(s) | Mnemonic |
|--------|----------|
| 31-0   | TCR31-0  |

# Meaning

Total Transfer Count 31 through 0 specify the total number of transfers remaining to be performed by the V120. This data is in two's complement format.

#### Demand FIFO Register (DFR) (14<sub>16</sub>)

The Demand FIFO Register is a read-only register located at address  $14_{16}$  in the V120. This register is a FIFO capable of "holding" 2048 demand entries. These entries are generated by VXI interrupts. If the INT DEN bit in the Control/Status Register (CSR) is enabled, each interrupt event on the VXI bus is stored in the Demand FIFO.

Demand entries are stored in the FIFO until they are either read by the host computer or sent out onto the Interconnect Highway as Demand messages. If the DMD ENA bit in the CSR is set to zero the V120 does not generate any demand messages, but continues to store demand events as they occur.

As long as there is at least one demand stored in the Demand FIFO, the DMD PND bit in the CSR is set to a one. If the Demand FIFO contains 2048 and one additional demand occurs, the data is not stored and the DMD OFL bit in the CSR is set. The Demand Overflow bits (DMD OFL) is not reset when the FIFO becomes less than full. A write operation to the CSR with the DMD CLR bit set to a one clears the FIFO and the overflow condition.

When a demand source is entered from an interrupt source, the data that is written into the FIFO is the actual interrupt request level. For example, data = 1 corresponds to interrupt request level 1; data = 6 corresponds to interrupt request level 6. Data from 1 to 7 represents demand sources generated from VXI interrupts.

The following diagram shows the bit pattern for the Demand FIFO Register.

| Daa | Faa | Daa | DSC |
|-----|-----|-----|-----|

|        |          | I   | Not Use | ∋d      |                                                                       | DSC<br>3 | DSC<br>2 | DSC<br>1 | DSC<br>0 |
|--------|----------|-----|---------|---------|-----------------------------------------------------------------------|----------|----------|----------|----------|
| Bit(s) | Mnemor   | nic | N       | leaning |                                                                       |          |          |          |          |
| 15-4   | Not Used | 1   |         |         | are not used.                                                         |          |          |          |          |
| 3-0    | DSC3-0   |     | fo      | llowing | Source 3 through 0 reflect the chart shows the valid ding data values |          |          |          |          |
|        | DSC      | DSC | DSC     | DSC     |                                                                       |          |          |          |          |
|        | 3        | 2   | 1       | 0       | <b>Demand Source</b>                                                  |          |          |          |          |
|        | 0        | 0   | 0       | 0       | Reserved                                                              |          |          |          |          |
|        | 0        | 0   | 0       | 1       | Interrupt Request Level 1                                             |          |          |          |          |
|        | 0        | 0   | 1       | 0       | Interrupt Request Level 2                                             |          |          |          |          |
|        | 0        | 0   | 1       | 1       | Interrupt Request Level 3                                             |          |          |          |          |
|        | 0        | 1   | 0       | 0       | Interrupt Request Level 4                                             |          |          |          |          |
|        | 0        | 1   | 0       | 1       | Interrupt Request Level 5                                             |          |          |          |          |
|        | 0        | 1   | 1       | 0       | Interrupt Request Level 6                                             |          |          |          |          |
|        | 0        | 1   | 1       | 1       | Interrupt Request Level 7                                             |          |          |          |          |
|        | 1        | 0   | 0       | 0       | Reserved                                                              |          |          |          |          |

Interrupt Handler Mask Register (IHMSK) (1816)

The Interrupt Handler Mask Register is a write-only register located at internal address  $18_{16}$ . This register is used to indivisint interrupt request lines will be monitored by the V120.

| Not Used $\begin{array}{c c} IRQ \\ 7 \\ 7 \\ 6 \\ 7 \\ 6 \\ 5 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$ | 15 | 14 | 13 | 12 | 11    | 10 | 9 | 8 | 7 | 6        | 5        | 4 | 3        | 2        | 1 | 0        |
|--------------------------------------------------------------------------------------------------------------|----|----|----|----|-------|----|---|---|---|----------|----------|---|----------|----------|---|----------|
|                                                                                                              |    |    |    | No | ot Us | ed |   |   |   | IRQ<br>7 | IRQ<br>6 |   | IRQ<br>4 | IRQ<br>3 | 2 | IRQ<br>1 |

| Bit(s) | Mnemonic | Meaning                                                            |
|--------|----------|--------------------------------------------------------------------|
| 6-0    | IRQ7-1   | The IRQ7 through IRQ1 bits are set to A1 to select which interrupt |
|        |          | request lines IRQ7 through IRQ1 will be monitored for interrupt    |
|        |          | handling by the V120.                                              |

#### Interrupt Handler Mask Register (IHMSK) (1816)

The Interrupt Handler Mask Register is a write-only register located at internal address 18<sub>16</sub>. This register i interrupt request lines will be monitored by the V120.

| Bit(s) | Mnemonic | Meaning                                                                                                                                                  |
|--------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6-0    | IRQ7-1   | The IRQ7 through IRQ1 bits are set to A1 to select which interrupt request lines IRQ7 through IRQ1 will be monitored for interrupt handling by the V120. |

#### Trigger Source Register (TSRC) (20<sub>16</sub>)

The Trigger Source Register is a write-only register located at internal address  $20_{16}$ . This register is used to source any of the following signals:

- 1.) VXI TTL Trigger lines 0 through 7.
- 2.) VXI ECL Trigger lines 0 and 1.
- 3.) Front Panel Trigger Out B and A.

A 200 nanosecond pulse is applied to each signal when its corresponding bit in the Trigger Source Register is written to a one. The following diagram shows the bit pattern for the Trigger Source Register.

| 15 | 14 | 13 | 12 | 11       | 10 | 9 | 8 | 7 | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|----|----|----|----|----------|----|---|---|---|-----|-----|-----|-----|-----|-----|-----|
|    |    |    |    |          |    |   |   |   | IRQ |
|    |    |    | Nc | Not Used |    |   |   |   |     |     |     |     | 3   | 2   | 1   |

| Bit(s) | Mnemonic | Meaning                  |
|--------|----------|--------------------------|
| 15-12  | Not Used | These bits are not used. |

| <i>Model V120</i><br>Bit(s) | Mnemonic | Meaning                                                                                             |
|-----------------------------|----------|-----------------------------------------------------------------------------------------------------|
| 11                          | FP TGB   | Front Panel Trigger Out B is set to a one to source the front panel trigger out B                   |
| 10                          | FP TGA   | Front Panel Trigger Out A is set to a one to source the front panel trigger out A.                  |
| 9-8                         | ECL1-0   | The ECL1 and ECL0 bits are set to a one to source a trigger on the VXI trigger lines ECL1 and ECL0. |
| 7-0                         | TTL7-0   | The TTL7 through TTL0 bits are set to a 1 to assert the VXI trigger lines TTL7 through TTL0.        |

#### Broadcast Trigger Mask Register (BTMSK) (24<sub>16</sub>)

The Broadcast Trigger Mask Register is a write-only register that is located at internal address  $24_{16}$  on the V120. This register is used to specify the signal to be sourced when a Broadcast Trigger message is received by the V120.

A Grand Interconnect host may issue a Broadcast Trigger message that informs all chassis connected to the highway to assert the data contained in the Broadcast Trigger Mask Register. On the V120, this data contains VXI TTL/ECL triggers and the two front panel triggers.

Associated with the Broadcast Trigger mechanism is the Delay Timer. The Delay Timer, if enabled, causes the V120 to delay the assertion of the Broadcast Trigger Mask Register until a predetermined interval of time elapses. The delay data is loaded in the Delay Count Register.

The following diagram shows the bit pattern for the Broadcast Trigger Mask Register.

| 15 | 14  | 13   | 12 | 11  | 10  | 9   | 8   | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|----|-----|------|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|    | Not | Used |    | FP  | FP  | ECL | ECL | TTL |
|    | NOU | useu |    | TGB | TGA | 1   | 0   | 7   | б   | 5   | 4   | 3   | 2   | 1   | 0   |

| <b>Bit(s)</b><br>15-12 | Mnemonic<br>Not Used | Meaning<br>These bits are not used.                                                                 |
|------------------------|----------------------|-----------------------------------------------------------------------------------------------------|
| 11                     | FP TGB               | Front Panel Trigger Out B is set to a one to source the front panel trigger out B                   |
| 10                     | FP TGA               | Front Panel Trigger Out A is set to a one to source the front panel trigger out A.                  |
| 9-8                    | ECL1-0               | The ECL1 and ECL0 bits are set to a one to source a trigger on the VXI trigger lines ECL1 and ECL0. |
| 7-0                    | TTL7-0               | The TTL7 through TTL0 bits are set to a 1 to assert the VXI trigger lines TTL7 through TTL0.        |

#### **Demand Messages**

The purpose of Demand Messages is to have a mechanism to inform the host of certain conditions.

The V120 can generate demand messages originating from a VME interrupt. Refer to the description of the Demand FIFO Register (DFR) and the Control Status Register (CSR) for further information.

Demands may be handled in two ways. One method of managing demands is by simply polling the Demand Pending (DMD PND) bit in the Control Status Register and reading the Demand FIFO. The second is to enable a pending demand to generate a highway message. When handled this way, it is not necessary to constantly read the Control Status register to determine if further action should be taken. The V120 can also insert these demand messages in the data stream. This allows demands to be seen at the host during large block transfers.

#### *Model V120* APPENDIX

# ID/Logical Address Register (Offset 00<sub>16</sub>)

On Read transactions:

| 15    | 14                  | 13       | 12       | 11                     | 10                | 9 | 8 | 7         | б        | 5        | 4        | 3         | 2        | 1          | 0                     |
|-------|---------------------|----------|----------|------------------------|-------------------|---|---|-----------|----------|----------|----------|-----------|----------|------------|-----------------------|
| 0     | 1                   | 1        | 1        | 1                      | 1                 | 1 | 1 | 0         | 0        | 1        | 0        | 1         | 0        | 0          | 1                     |
| On W  | vrite tra           | insactio | ons:     |                        |                   |   |   |           |          |          |          |           |          |            |                       |
| 15    | 14                  | 13       | 12       | 11                     | 10                | 9 | 8 | 7         | 6        | 5        | 4        | 3         | 2        | 1          | 0                     |
|       |                     |          | Not      | Used                   |                   |   |   | LA<br>128 | LA<br>64 | LA<br>32 | LA<br>16 | LA<br>08  | LA<br>04 | LA<br>02   | LA<br>01              |
|       | e Type<br>lot0 co   |          |          | set 02 <sub>16</sub> ) | )                 |   |   |           |          |          |          |           |          |            |                       |
| 15    | 14                  | 13       | 12       | 11                     | 10                | 9 | 8 | 7         | 6        | 5        | 4        | 3         | 2        | 1          | 0                     |
| 0     | 0                   | 0        | 0        | 0                      | 0                 | 0 | 0 | 0         | 0        | 1        | 0        | 0         | 0        | 0          | 1                     |
| For n | on-Slot             | t0 conf  | iguratio | ons:                   |                   |   |   |           |          |          |          |           |          |            |                       |
| 15    | 14                  | 13       | 12       | 11                     | 10                | 9 | 8 | 7         | б        | 5        | 4        | 3         | 2        | 1          | 0                     |
| 0     | 0                   | 0        | 0        | 0                      | 0                 | 0 | 1 | 0         | 0        | 1        | 0        | 0         | 0        | 0          | 0                     |
|       | s/Contr<br>ead trai |          |          | ffset 04               | 4 <sub>16</sub> ) |   |   |           |          |          |          |           |          |            |                       |
| 15    | 14                  | 13       | 12       | 11                     | 10                | 9 | 8 | 7         | 6        | 5        | 4        | 3         | 2        | 1          | 0                     |
| 0     | MOD<br>ID<br>*      | 1        | 1        | 1                      | 1                 | 1 | 1 | 1         | 1        | 1        | 1        | Rea<br>dy | Pas<br>s | SYS<br>INB | Sof<br>t<br>Res<br>et |

On Write transactions:

| Moue     | <i>l V120</i> |                         |           |                    |                    |          |          |          |          |          |          |          |          |            |                       |
|----------|---------------|-------------------------|-----------|--------------------|--------------------|----------|----------|----------|----------|----------|----------|----------|----------|------------|-----------------------|
| 15       | 14            | 13                      | 12        | 11                 | 10                 | 9        | 8        | 7        | б        | 5        | 4        | 3        | 2        | 1          | 0                     |
|          |               |                         |           |                    |                    | Not      | Used     |          |          |          |          |          |          | SYS<br>INB | Sof<br>t<br>Res<br>et |
| Attril   | bute Ro       | egister (               | Offset    | 08 <sub>16</sub> ) |                    |          |          |          |          |          |          |          |          |            |                       |
| 15       | 14            | 13                      | 12        | 11                 | 10                 | 9        | 8        | 7        | 6        | 5        | 4        | 3        | 2        | 1          | 0                     |
| 1        | 1             | 1                       | 1         | 1                  | 1                  | 1        | 1        | 1        | 1        | 1        | 1        | 1        | IR*      | IH*        | IS*                   |
| MOD      | DID Reg       | gister (C               | Offset 0  | 8 <sub>16</sub> )  |                    |          |          |          |          |          |          |          |          |            |                       |
| 15       | 14            | 13                      | 12        | 11                 | 10                 | 9        | 8        | 7        | 6        | 5        | 4        | 3        | 2        | 1          | 0                     |
| 1        | 1             | MODI<br>D<br>Enab<br>le | MID<br>12 | MID<br>11          | MID<br>10          | MID<br>9 | MID<br>8 | MID<br>7 | MID<br>6 | MID<br>5 | MID<br>4 | MID<br>3 | MID<br>2 | MID<br>1   | MID<br>0              |
| Serial   | l Numt        | oer Higł                | 1 Regis   | ter (Of            | fset 0A            | 16)      |          |          |          |          |          |          |          |            |                       |
| 15       | 14            | 13                      | 12        | 11                 | 10                 | 9        | 8        | 7        | 6        | 5        | 4        | 3        | 2        | 1          | 0                     |
| SN<br>31 | SN<br>30      | SN<br>29                | SN<br>28  | SN<br>27           | SN<br>26           | SN<br>25 | SN<br>24 | SN<br>23 | SN<br>22 | SN<br>21 | SN<br>20 | SN<br>19 | SN<br>18 | SN<br>17   | SN<br>16              |
| Serial   | l Numł        | oer Low                 | Regist    | er (Off            | set 0C1            | 6)       |          |          |          |          |          |          |          |            |                       |
| 15       | 14            | 13                      | 12        | 11                 | 10                 | 9        | 8        | 7        | б        | 5        | 4        | 3        | 2        | 1          | 0                     |
| SN<br>15 | SN<br>14      | SN<br>13                | SN<br>12  | SN<br>11           | SN<br>10           | SN<br>9  | SN<br>8  | SN<br>7  | SN<br>6  | SN<br>5  | SN<br>4  | SN<br>3  | SN<br>2  | SN<br>1    | SN<br>0               |
| Versi    | on Nur        | nber Re                 | egister ( | Offset             | 0E <sub>16</sub> ) |          |          |          |          |          |          |          |          |            | _                     |
| 15       | 14            | 13                      | 12        | 11                 | 10                 | 9        | 8        | 7        | 6        | 5        | 4        | 3        | 2        | 1          | 0                     |

| Model V120<br>Firmware Version | Firmware Revision | Hardware Version | Hardware Revision |
|--------------------------------|-------------------|------------------|-------------------|
|                                |                   |                  |                   |

## Interrupt Status Register (Offset 1A<sub>16</sub>)

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7         | 6 | 5         | 4         | 3         | 2 | 1 | 0 |
|----|----|----|----|----|----|---|---|-----------|---|-----------|-----------|-----------|---|---|---|
| 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1 | IR<br>EN* | 1 | IRQ<br>S3 | IRQ<br>S2 | IRQ<br>S1 | 1 | 1 | 1 |

## Subclass Register (Offset 1E<sub>16</sub>)

| 15         | 14       | 13       | 12         | 11                    | 10         | 9          | 8        | 7          | б        | 5          | 4          | 3        | 2          | 1         | 0          |
|------------|----------|----------|------------|-----------------------|------------|------------|----------|------------|----------|------------|------------|----------|------------|-----------|------------|
| 1          | 1        | 1        | 1          | 1                     | 1          | 1          | 1        | 1          | 1        | 1          | 1          | 1        | 1          | 1         | 0          |
|            |          |          |            |                       |            |            |          |            |          |            |            |          |            |           |            |
| 15         | 14       | 13       | 12         | 11                    | 10         | 9          | 8        | 7          | 6        | 5          | 4          | 3        | 2          | 1         | 0          |
| STS<br>PAS | RSV<br>D | RSVD     | DMD<br>OFL | DMS<br>CLR            | DMD<br>PND | DMD<br>ENA | RSV<br>D | INT<br>DEN | RSV<br>D | DLY<br>ENA | BST<br>ENA | RSV<br>D | SYS<br>FAL | RD<br>SFL | SYS<br>RST |
| Suffix     | K High I | Register | r (Offso   | et 20 <sub>16</sub> ) |            |            |          |            |          |            |            |          |            |           |            |
| 15         | 14       | 13       | 12         | 11                    | 10         | 9          | 8        | 7          | б        | 5          | 4          | 3        | 2          | 1         | 0          |
| 0          | 0        | 1        | 1          | 0                     | 0          | 0          | 1        | 0          | 0        | 1          | 1          | 0        | 0          | 0         | 1          |
| Suffix     | Low F    | Register | (Offse     | t 22 <sub>16</sub> )  |            |            |          |            |          |            |            |          |            |           |            |
| 15         | 14       | 13       | 12         | 11                    | 10         | 9          | 8        | 7          | 6        | 5          | 4          | 3        | 2          | 1         | 0          |
| 0          | 0        | 1        | 1          | 0                     | 0          | 0          | 1        | 0          | 0        | 1          | 1          | 0        | 0          | 0         | 1          |

Control/Status Register (CSR) (0016)

| Mode       | l V120    |           |            |                      |                   |                    |           |            |           |            |            |           |            |           |            |
|------------|-----------|-----------|------------|----------------------|-------------------|--------------------|-----------|------------|-----------|------------|------------|-----------|------------|-----------|------------|
| 15         | 14        | 13        | 12         | 11                   | 10                | 9                  | 8         | 7          | 6         | 5          | 4          | 3         | 2          | 1         | 0          |
| STS<br>PAS | RSV<br>D  | RSVD      | DMD<br>OFL | DMS<br>CLR           | DMD<br>PND        | DMD<br>ENA         | RSV<br>D  | INT<br>DEN | RSV<br>D  | DLY<br>ENA | BST<br>ENA | RSV<br>D  | SYS<br>FAL | RD<br>SFL | SYS<br>RST |
| Burst      | Count     | Registe   | er (BC]    | Г) (04 <sub>16</sub> | )                 |                    |           |            |           |            |            |           |            |           |            |
| 15         | 14        | 13        | 12         | 11                   | 10                | 9                  | 8         | 7          | 6         | 5          | 4          | 3         | 2          | 1         | 0          |
|            |           |           | Not        | Used                 |                   |                    |           | BCT<br>7   | BCT<br>6  | BCT<br>5   | BCT<br>4   | BCT<br>3  | BCT<br>2   | BCT<br>1  | BCT<br>0   |
| Delay      | Count     | Regist    | er (DC     | Г) (08 <sub>16</sub> | )                 |                    |           |            |           |            |            |           |            |           |            |
| 15         | 14        | 13        | 12         | 11                   | 10                | 9                  | 8         | 7          | б         | 5          | 4          | 3         | 2          | 1         | 0          |
| DCT<br>15  | DCT<br>14 | DCT<br>13 | DCT<br>12  | DCT<br>11            | DCT<br>10         | DCT<br>9           | DCT<br>8  | DCT<br>7   | DCT<br>6  | DCT<br>5   | DCT<br>4   | DCT<br>3  | DCT<br>2   | DCT<br>1  | DCT<br>0   |
| Total      | Transf    | er Cou    | nt Regi    | ster (T              | TCR) (            | 0C <sub>16</sub> ) |           |            |           |            |            |           |            |           |            |
| 31         | 30        | 29        | 28         | 27                   | 26                | 25                 | 24        | 23         | 22        | 21         | 20         | 19        | 18         | 17        | 16         |
| TCR<br>31  | TCR<br>30 | TCR<br>29 | TCR<br>28  | TCR<br>27            | TCR<br>26         | TCR<br>25          | ТСТ<br>24 | TCR<br>23  | TCR<br>22 | TCR<br>21  | TDR<br>20  | TCR<br>19 | TCR<br>18  | TCR<br>17 | TCR<br>16  |
| 15         | 14        | 13        | 12         | 11                   | 10                | 9                  | 8         | 7          | 6         | 5          | 4          | 3         | 2          | 1         | 0          |
| TCR<br>15  | TCR<br>14 | TCR<br>13 | TCR<br>12  | TCR<br>11            | TCR<br>10         | TCR<br>9           | TCR<br>8  | TCR<br>7   | TCR<br>6  | TCR<br>5   | TCR<br>4   | TCR<br>3  | TCR<br>2   | TCR<br>1  | TCR<br>0   |
| Dema       | nd FIF    | O Regi    | ster (D    | FR) (14              | 4 <sub>16</sub> ) |                    |           |            |           |            |            |           |            |           |            |
| 15         | 14        | 13        | 12         | 11                   | 10                | 9                  | 8         | 7          | б         | 5          | 4          | 3         | 2          | 1         | 0          |

| Not Used | DSC<br>3 | DSC<br>2 | DSC<br>1 | DSC<br>0 |  |
|----------|----------|----------|----------|----------|--|
|----------|----------|----------|----------|----------|--|

## Interrupt Handler Mask Register (IHMSK) (1816)

| 15       | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|----------|----|----|----|----|----|---|---|---|-----|-----|-----|-----|-----|-----|-----|
|          |    |    |    |    |    |   |   |   | IRQ |
| Not Used |    |    |    |    |    |   |   | 7 | 6   | 5   | 4   | 3   | 2   | 1   |     |

## Trigger Source Register (TSRC) (20<sub>16</sub>)

| 15 14 13 12 | 11  | 10  | 9   | 8   | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Not Used    | FP  | FP  | ECL | ECL | TTL |
|             | TGB | TGA | 1   | 0   | 7   | 6   | 5   | 4   | 3   | 2   | 1   | O   |

## Broadcast Trigger Mask Register (BTMSK) (24<sub>16</sub>)

| 15 | 14    | 13   | 12 | 11        | 10        | 9        | 8        | 7        | 6        | 5        | 4        | 3        | 2        | 1        | 0        |
|----|-------|------|----|-----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|    | Not ( | Jsed |    | FP<br>TGB | FP<br>TGA | ECL<br>1 | ECL<br>0 | TTL<br>7 | TTL<br>6 | TTL<br>5 | TTL<br>4 | TTL<br>3 | TTL<br>2 | TTL<br>1 | TTL<br>O |